社会ネットワーク分析の手法と 結核対策への活用について

結核研究所 臨床疫学部

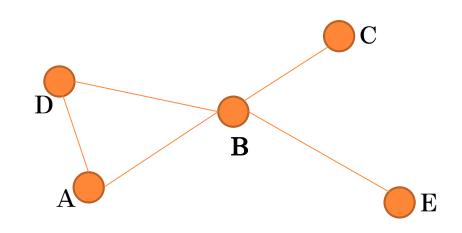
社会ネットワーク分析とは (Social Network Analysis: SNA)

- ・「社会ネットワーク」とは社会における個人・ 企業・国などあらゆる社会単位(actor)として 捉え、アクター相互の関係性を表した構造体。 例:所内の職員同士の人間関係、企業間の取引関係、アジア 諸国の貿易関係など
- ・「社会ネットワーク分析」とはアクターの集合としての社会構造を「・・数学的に分析することで、アクターの関わるイベント(社会的出来事)の生起を説明しようとする研究」。 (金光、2003)

社会ネットワーク研究の応用事例

http://csspcat8.ses.usp.ac.jp/lab/ideken/sotsuron/f-05mochizuki-soturon.html より一部抜粋

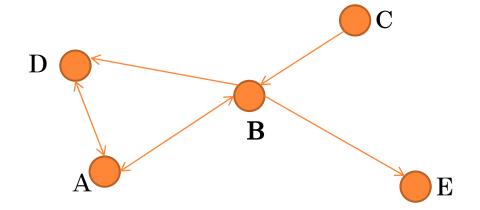
カテゴリー	研究用途
ビジネス	企業グループ経営の効率化
	事業の成果と組織構造の関係性の解明
	非効率的な部門の特定
	顧客のコミュニティ構造解明
バーチャル	掲示板やチャットユーザーの類型化とグループ分け
	情報共有のためのアクセス制御環境の開発
日常生活	ボランティアネットワークの効率的な組織化の方法
	市民ネットワークの強化
その他	感染症伝染シュミレーション
	ファッショントレンドにおけるメディア戦略


社会ネットワーク分析の概要(基本概念と用語等)

ネットワークの表現: 社会関係行列&グラフ

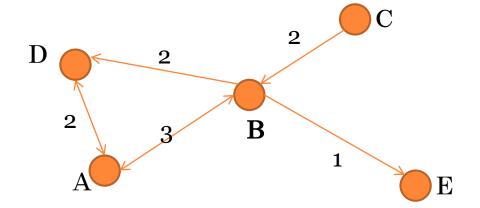
- 1行目、1列目にアクター(p)を並べる。
- ・ piとpjに関係がある場合は1、ない場合は0を入力する。
- ・対角成分にはoを入力する。

無向グラフ:関係性を「pに会ったことがある」 piからpjへの関係 = pjからpiへの関係


		A	В	C	D	E
A	_	0	1	0	1	0
В)	1	0	1	1	1
C	l ,	0	1	0	0	0
D)	1	1	0	0	0
E	1	0	1	0	0	0

ネットワークの表現: 社会関係行列&グラフ(2)

有向グラフ:関係性を「pを知っている」 piからpjへの関係≠pjからpiへの関係


	A	В	C	D	E
A	0	1	0	1	0
В	1	0	0	1	1
С	0	1	0	0	0
D	1	0	0	0	0
E	0	0	0	0	0

ネットワークの表現: 社会関係行列&グラフ(3)

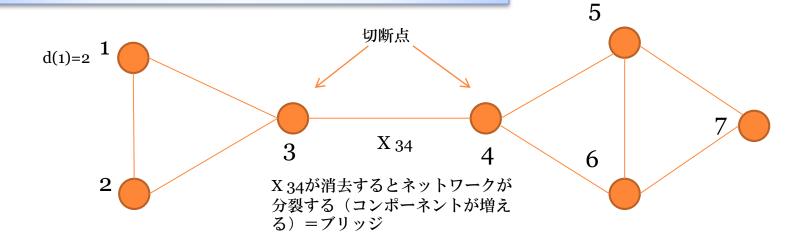
重み付きグラフ:関係性を「pとの電話回数」「pへの信頼度の3段階評価」など

	A	В	\mathbf{C}	D	E
A	0	3	0	2	0
В	3	0	2	2	1
C	0	2	0	0	0
D	2	2	0	0	0
E	0	1	0	0	0

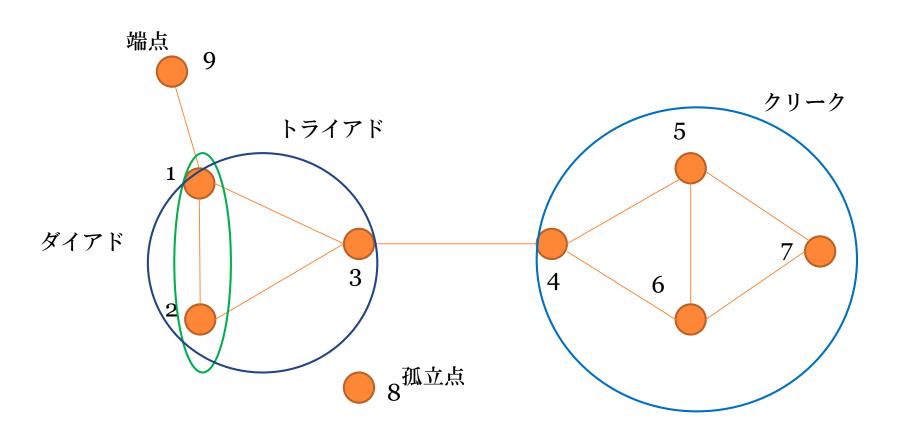
ネットワークと各パーツの名称

グラフ(graph)

点 (vertex (欧州), node. point (米))


線 (line, tie)

辺 (edge)- 無向グラフ


弧(arc)- 有向グラフ

多重線(multiple lines)

点の総数=g g=7 次数(degree)=点iに繋がっている線の数=d(i) d(1)=2, d(4)=3 点iと点jを結ぶ線=x ij

ネットワークと各パーツの名称(2)

各点の指標

- 次数中心性(=次数) degree centrality
 線が集まるほど中心性が高い(知名度、人気、情報発信力等)
- 近接中心性 closeness centrality 他の点との距離が近いほど中心性が高い(影響の受けやすさ等)
- 媒介中心性 betweeness centrality その点を通る経路が多いほど中心性が高い(情報や資源の流れに関与する度合い等)
- REACH score ある点から2辺あるいは弧以内で到達できる点の数

ネットワークの指標

- ネットワークの密度(Δ)密度が高い→小規模で同質性が高い、信頼感や目的を共有しやすいが、新しい情報や資源の獲得に不向き。
- 平均次数
- ネットワークの直径 (ネットワークの果て)
- 平均距離 (ネットワークのまとまり)
- ・ 次数集中度 (次数の分散/最大の分散)
- 近接性集中度 (近接性の分散/最大の近接性)
- ・ 媒介性集中度 (媒介性の分散/最大の媒介性)
- クラスタ係数 (ネットワーク全体の拘束度)

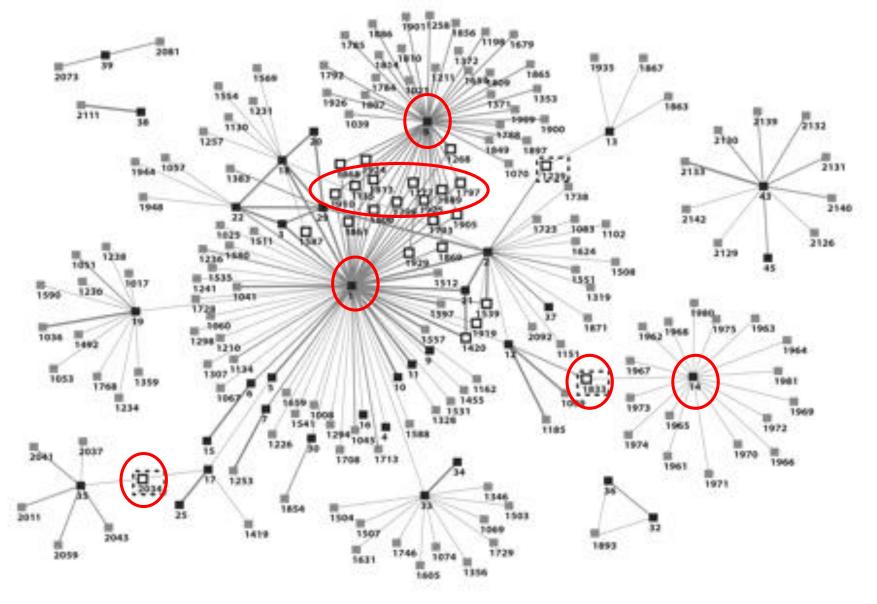
精複対策への応用

結核対策におけるSNAの事例

- ・ 通常の接触者健診では認識できなかった潜在的 な感染経路を探知することでLTBI対象の接触者 を把握。
- McKenzie et al (2007) アメリカ、オクラホマ州
- Cook et al (2007) アメリカ(カリフォルニア、ジョージア)、カナダ(バンクーバー)
- McElroy et al (2003) アメリカ、カンザス州
- 後ろ向き調査、初発患者の特定(+分子疫学)
- Gardy et al (2011) カナダ、ブリティッシュコロンビア
- Fitzpatrick et al (2001) アメリカ (インディアナ)

McKenzie et al (2007)

- 2001年~集団感染。
- 2002年3月~CDCが調査を開始。
- 通常のcontact investigationによる情報を更に分析。
 - -接触者との面接
 - -接触者の情報分析(名前、年齢、性別、人種、HIV、初発患者との関係性(濃度、強度)、TSTの結果、症状、胸部X線検査の結果)
 - -初発患者の接触者の詳細なカテゴリー化
- InFlowを用いてリーチ値、次数中心性、媒介中心性を算出。


McKenzie et al (2007)

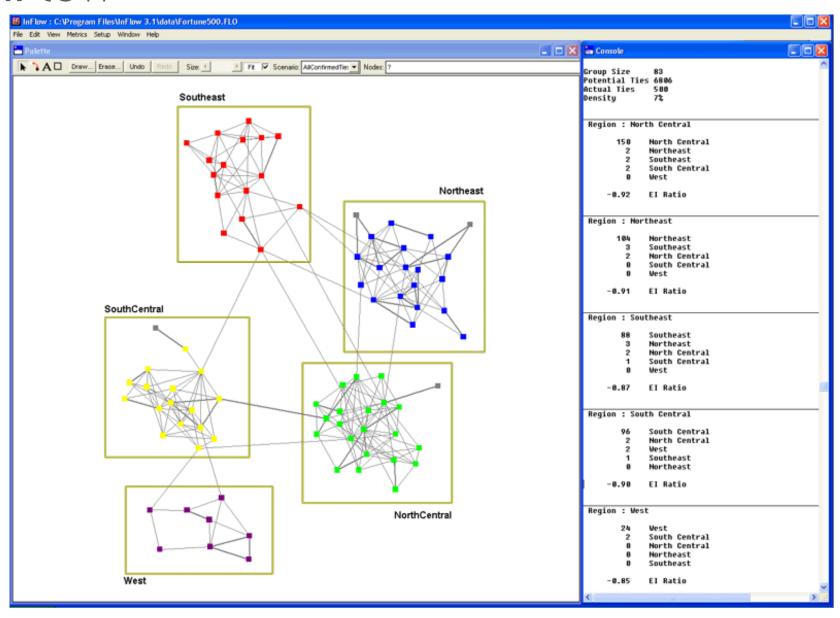
- 2001年 7月 初発患者(男性、23歳)が肺結核と診断。2000年11月頃より咳症状あり。
- 1996年から2001年に5回服役しており、3地域において家族・友人らと共同生活、 2病院にて肺炎・気管支炎で受診(計4回)、飲酒店にてアルバイト(3週間)。
- 感染期間と思われる2000 11月~2001 7月:接触者294人中、251人が評価された。 うち19人が2次結核患者。
- 20018月~200212月: 更に37人の2次結核患者。
- 初発患者+34人の2次結核患者の接触者は1039人、うち大半は初発患者の直接の接触者だったが、200人ほどが未評価。200人~の優先度を決定するために、初発患者を含む結核患者35人及び未評価の200人の接触者の分析。
- SNAの結果、優先接触者は21人。うち14人が評価され、4人がLTBIと診断。 SNAによって優先接触者と判断された接触者は非優先接触者(non-prioritized contacts)と比較してLTBIが診断される率が高かった(OR=7.8; 95%CI 1.6-36.6)。

McKenzie et al (2007)より一部抜粋

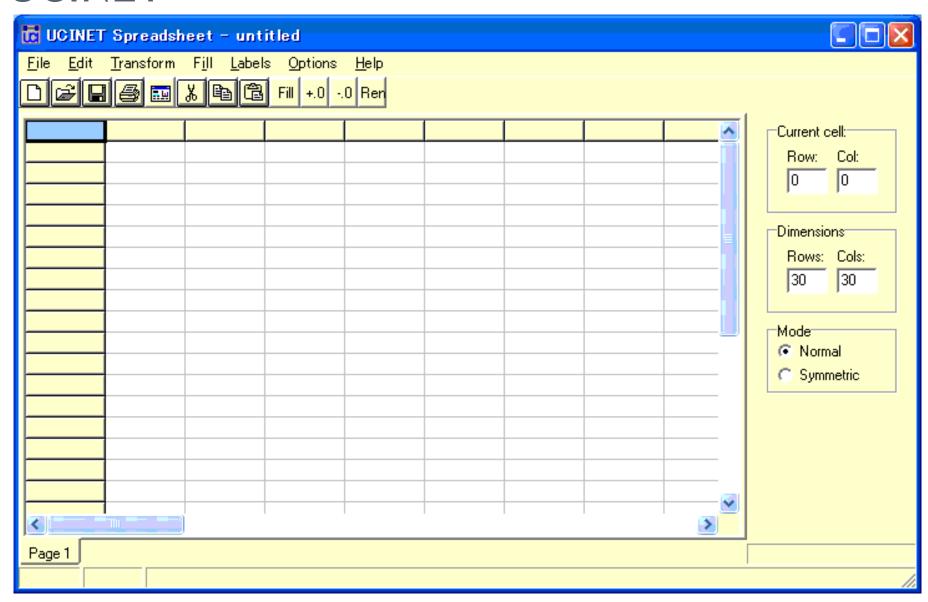
	Reach		Degree		Betweeness	
Score rank	node	score	node	score	node	score
1	1	0.830	1	0.385	1	0.849
2	1135	0.538	8	0.253	8	0.289
3	1268	0.538	14	0.110	12	0.208
4	1777	0.538	33	0.099	2	0.187
5	1793	0.538	19	0.071	14	0.179
6	1797	0.538	18	0.066	(1833)	0.179
7	1799	0.538	22	0.060	33	0.128
8	1800	0.538	29	0.038	19	0.118
9	1813	0.538	35	0.038	5	0.104
10	1861	0.538	12	0.033	17	0.095
11	1868	0.538	13	0.027	2034	0.064
12	1869	0.538	17	0.022	18	0.062

McKenzie et al (2007)より一部抜粋

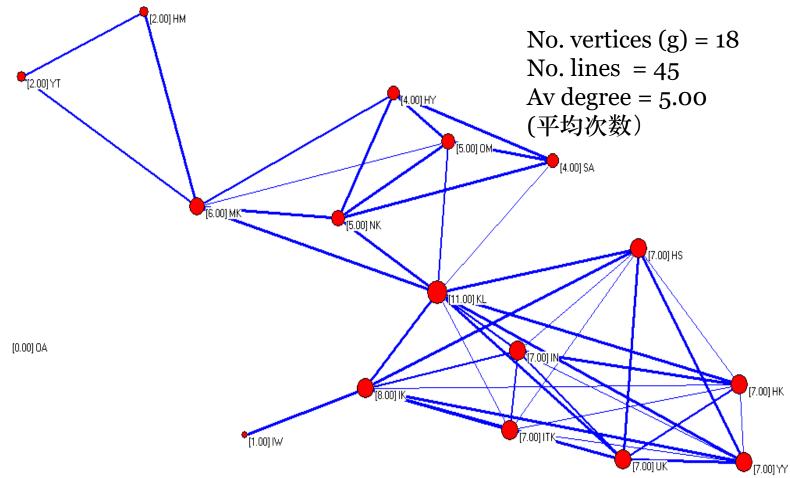
SNAを導入することの利点


- 分子疫学的な手法よる解析の結果を待たずに、 SNAは接触者検診によって得られた情報を解析 し、関係性を定量化することで、迅速に感染の 拡大予防に繋げることができる。
- 各点やダイアド、トライアドの特徴を数値化し、 比較することで優先接触者の特定だけではなく、 情報提供者やフォローアップにおける優先者を 特定することができる。

社会ネットワーク分析ソフト&デモストレーション


社会ネットワーク解析用ソフトウェア (windows用) http://d.hatena.ne.jp/lmura/20071025

	特徴	日本語マニュアル	単価
StOCNET	いくつかの別個のソフトを含んでいて、進 んだ統計モデルを使用している。 確率論的モデルに基づいている。 本格的。	無し	無料
UCINET	世界的に普及、日本でも有名。 機能が多い。 User-friendly。	有り	30日間無料、そ の後¥25,600~
Pajek	世界的に普及、日本でも有名。 データ入力にノート機能を使うなど独特。	有り	無料
InFlow	トレーニングあり。 User-friendly。	無し	?


InFlow

UCINET

Pajek

各点の指標:誰が最も中心性が高いか・・・?

Rank	Vertex 点	Degree Centrality 次数中心性	Vertex 点	Degree Centrality weighted
1	KL	11	KL	27
2	IK	8	IK	21
3	UK	7	UK	17
4	HK	7	NK	15
5	ITK	7	YY	15
6	HS	7	HS	15
7	YY	7	MK	14
8	IN	7	IN	13
9	MK	6	HK	12

各点の指標:誰が最も中心性が高いか・・・?

Rank	Vertex 点	Bet. Centrality 媒介中心性	Vertex 点	Closeness Centrality (近接中心性)
1	KL	0.42	KL	0.70
2	MK	0.21	MK	0.53
3	IK	0.10	IK	0.53
4	NK	0.02	NK	0.51
5	OM	0.02	UK	0.51
7	SA	0.01	ITK	0.51
8	UK	0.00	YY	0.51
9	IN	0.00	NK	0.51

社会ネットワーク分析と 地理情報システムの 結核研究への応用の可能性

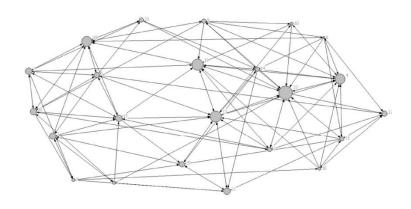
先行研究 HIV予防対策におけるSNAとGISの統合

●セミナー

Ian Holloway (2013), USA

"Integrating Venue-Based
Social Network Analysis and
Geographic Information System
Analysis to Guide Targeted HIV
Prevention"

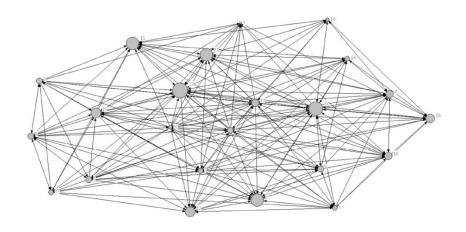
(こちらについて内容を補いつつ紹介する)


●論文

Ian Holloway (2014), USA "Venue-Based Network Analysis to Inform HIV Prevention Efforts Among Young Gay, Bisexual, and Other Men Who Have Sex With Me, Society for Prevention Research" (GISについては述べられていない)

2つのネットワーク

Sociometric Networks

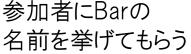

個人の関係による、つながり。

Name Generator(例) 過去1ヶ月に大学内で会話をした **友人**の名前を挙げてください。

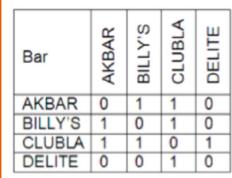
Affiliation Networks

組織への所属を共有することによる、個人同士のつながり。

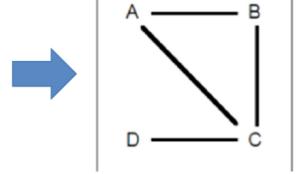
Name Generator (例) 履修している<u>クラス</u>の名前を 挙げてください。


Theory of Duality of Persons and Groups

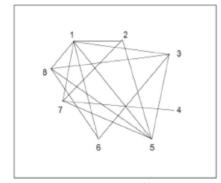
By determining which social contexts are shared, two networks can be created


- People connected by shared social space
- Social spaces connected by people who cross those social spaces

Source: Brieger, 1974; Goffman, 1971

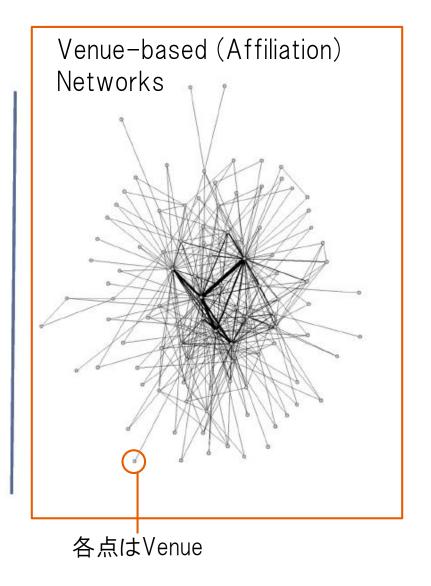

Venue-Based Networks

Person	AKBAR	BILLY'S	CLUBLA	DELITE	
PID1	1	0	1	0	
PID2	0	0	1	0	
PID3	1	1	0	0	
PID4	0	0	0	1	
PID5	0	1	1	0	
PID6	1	0	0	0	
PID7	0	0	1	1	
PID8	1	1	0	0	
	PID1 PID2 PID3 PID4 PID5 PID6 PID7	PID1 1 PID2 0 PID3 1 PID4 0 PID5 0 PID6 1 PID7 0	PID1 1 0 PID2 0 0 PID3 1 1 PID4 0 0 PID5 0 1 PID6 1 0 PID7 0 0	PID1 1 0 1 PID2 0 0 1 PID3 1 1 0 PID4 0 0 0 PID5 0 1 1 PID6 1 0 0 PID7 0 0 1	PID1 1 0 1 0 PID2 0 0 1 0 PID3 1 1 0 0 PID4 0 0 0 1 PID5 0 1 1 0 PID6 1 0 0 0 PID7 0 0 1 1


個人を介した Barのつながり

Venue-based (Affiliation) Networks

Person	PID1	PID2	PID3	PID4	PID5	PID6	PID7	PID8
PID1	0	1	1	0	1	1	1	1
PID2	1	0	0	0	1	0	1	0
PID3	1	0	0	0	1	1	0	1
PID4	0	0	0	0	0	0	1	0
PID5	1	1	1	0	0	0	1	1
PID6	1	0	1	0	0	0	0	1
PID7	1	1	0	1	1	0	0	0
PID8	1	0	1	0	1	1	0	0


Barを介した 個人のつながり

Person-based (Sociometric) Networks

Person and Venue Networks

Person (Sociometric) Networks 各点はPerson

Venue-based networks

- 各場所(Venue)は、個人の選出によるものなので、 個人に帰属する変数の集積値を分析に利用出来る。
- ・各場所(Venue)は、立地・面積・距離などの地理的 特性を持っている。

地理情報システムへの適応

先行研究の目的

YMSM(Young Men Who Have Sex with Men)が 集まりパートナーを探す場所(Venue)を検討し、 HIV予防的介入をすべき場所を特定する。

GISを用いて、SNAから得た場所(Venue)の

- 情報の地図上での視覚化
- 平均距離、重心の算出
- 地理的集積性の検討
- 背景(バックグラウンド)情報との比較・検討

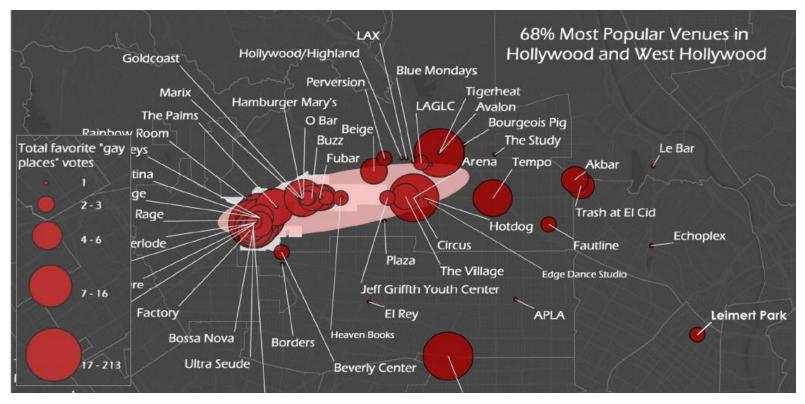


図) Ian Holloway (2013), "Integrating Venue-Based Social Network Analysis and Geographic Information System Analysis to Guide Targeted HIV Prevention"

先行研究における結果

- ほぼ全ての被験者(99%)が、1つ以上の場所 (Venue)に出入りしていた。
- 多くの被験者(87%)は、最も中心性の高い6つの 場所(Venue)によって繋がっていた。
- 上位6つの場所(Venue)は、お互いに4.37マイル (約7km)以内に立地していた。
- これらは、ロサンジェルスで最もHIV罹患率の 高い地域内に立地していた。 (住民100,000対5,155)

結核対策への応用 SNA及びSNA+GIS

課題:

- 目的は何か~接触者検診への導入?過去の集団発生の分析?
- 調査表の作成、「関係性」の定義と重みづけ

+GISの可能性:

- 場所(Venue)の特性及び定義
 - 居住地、職場、学校、医療機関、レストラン、居酒屋など
- 場所(Venue)を選出した個人の特性の検討
- 場所(Venue)の空間的分布の特性
 - 集積性、平均距離など
- 背景情報との比較・検討
 - ・罹患率など